
Story

The game takes place a number of years after the events of EoSD. Flandre’s 500th birthday approaches,
and the SDM residents prepare for a centennial celebration. However, Flandre is still accosted by night
terrors that prevent her from feeling well enough for the occasion. The player must guide Flandre
through the overworld, unlocking dream worlds, and clearing them, in order to defeat the terrors within.

Technical notes

Kouma uses cocos2d/GLFW, which does not support selecting a GPU device. If you are using a multi-GPU
system (meaning a “GPU 0” and “GPU 1” in the Windows 10 task manager), you will need to use
Nvidia/AMD control panel and select to use dedicated device for kouma.exe, although the game should
be playable on most integrated graphics.

The game engine technically supports running at any resolution and framerate. Mostly, it has been
tested at 1080p60, although it has also been tested at 720p, and at 30 FPS as well as 120 FPS.

Kouma supports gamepads. In the output log, you should see a message “gamepad connected” or
“gamepad not connected”. It supports custom control mappings for both the gamepad and keyboard.

Kouma uses OpenAL for the sound engine. It should support surround sound output automatically based
on the Windows sound device configuration.

Kouma uses dynamic lighting. The lighting currently doesn’t have any gameplay effect, other than
affecting what the player can see. (The only exception to this are darkness area rooms, where the player
takes damage if all torches out go out.) Generally, darker areas indicate optional areas of greater
difficulty.

Application data is stored in “%USERPROFILE%\AppData\Local\Koumachika\”. This directory should be
automatically created when the application is launched. In turn, it contains “replays” and “profiles”
directories, as well as log.txt. Here, you can create config.txt to configure application options.

Gameplay concepts

Equip slots - The UI shows four equip slots in a plus-shape. The idea is to have an equip slot for each kind
of action (fire, spell, bomb, power attack), and use the corresponding dpad button to cycle that equip
slot. The demo does not have additional bombs or power attacks. Instead, the extra two buttons are
used to allow cycling through spells and fire patterns bi-directionally.

Profile/savegame – The game provides 9 save slots, corresponding to profile1.profile – profile9.profile.
The corresponding profile name is selected when choosing a new game. Technically, the game engine
supports loading and saving profiles with any file name; however, when you choose to save from within
the game, it will save to the same file name that was loaded, or profile1-9 for the new game first save.

Note0: The game includes autosaving: autosave.profile will be created/overwritten after completing a
level. It is not recommended to load autosave.profile directly (see below).

Note1: in log.txt, a confirmation will be printed when a profile is loaded, saved, or overwritten.

Note2: Since the game engine uses the same file that was loaded as the save location, you probably
don’t want to load autosave.profile. Instead, to recover progress from the autosave, simply copy or
rename it to a different file name, including replacing an existing profile1-9. If you want, you should
preview the autosave.profile in the Load Profile menu before copying it to a profile slot.

Replay - The game automatically captures replay data when a level is being played. The replay will
automatically be saved if the level is completed. The player also has the option to save the replay in the
game over menu. The replay does not process UI input, such as pausing the game, or advancing dialog.
Instead, live controls are used. The game engine must be running at the same frame rate at which the
replay was created. Currently, unlike save profiles, there isn’t a preview menu to show replay details of
the selected file before running it. So, if the framerate doesn’t match, it will simply fail to load, and an
error message will be printed to log.txt.

Dream World – As Flandre progresses through the world, she unlocks dream worlds, where she can
violently confront her fears. Dream worlds can be activated from the pause menu in the overworld, or
by interacting with the desk in Flandre’s room.

In the dream world, Flandre must fight enemies and reach the goal in the current level. When Flandre
interacts with the goal, the level is completed. If the goal is in a boss room, the enemy must be defeated
before it can be used.

If Flandre reaches 0 HP in the dream world, it is game over. All progress in the current level is lost,
except when a floor is successfully completed. The player can save in the overworld, or between floors.

A world consists of multiple floors, about 4-6. When a level is completed, it unlocks the next level in that
world. New worlds are only unlocked via progress in the overworld. Clearing floors also has effects on
the overworld, and not just the final levels of each world; look for new things appearing, and even
obstacles disappearing in the overworld. Only the first world (Graveyard) is fully implemented.

Focus/shield – In focus mode, you will be able to see your own physics body (“hit circle”), as well as your
graze radius and shield area. Your movement speed will be reduced, but the player’s shield will be active.
When in focus mode, bullets that hit the player front-on will not damage her, although blocking bullets
will drain power; shield does not protect against touch damage, bombs, or area-of-effect spells. At a
shield level of 1, the player will only be able to deflect bullets within 45 degrees of the angle they are
facing. Each upgrade adds another 45 degree slice of protection, and reduces the stamina cost for angles
that were previously covered. Focus mode can also be used to determine the exact angle the player is
facing.

Shield level 0-45 deg 45-90 deg 90 – 135 deg 135-180 deg
1 10 stamina n/a n/a n/a
2 5 stamina 10 stamina n/a n/a
3 2.5 stamina 7.5 stamina 12.5 stamina n/a
4 0 stamina cost 5 stamina 10 stamina 15 stamina

Combo – combo points are acquired every time you damage an enemy. They drain over time, in addition
to being zeroed out if you take damage. If you get five hits a second, you will reach 100% combo in five
seconds. Once combo mode is active, it will stay active until combo point reach zero, or until you take
damage. When active, the player will have a gold flicker; combo gives the player double graze reward,
and a 25% attack damage bonus.

Bomb – The player can summon bombs, which materialize in front of her. If you press bomb with
focus/shield active, she will throw the bomb instead. Materializing a bomb uses 5 MP. Bombs will do full
damage to enemies within half of their blast radius, and the damage will drop off to zero at the edge of
the radius. Bombs also create a large knockback force. Bombs can break breakable walls. Bombs can be
bumped into, by either the player or enemies, and move across the floor.

Upgrades

Upgrades change Flandre’s attributes in the dream world, though they can also be found in the
overworld. When an upgrade is found in a dream world level, it is applied immediately, but it will be lost
if you quit the level or get a game over before clearing the floor.

Max HP Increase the player’s max HP by
25 (as well as current HP).

Max MP Increase the player’s max MP by
25 (as well as current MP).

Max stamina Increases max stamina by 25 (as
well as current stamina).

Agility

Increase agility by 1 point. Agility
is applied exponentially, with

each point increasing speed by
33%

Attack speed

Increases the rate at which
attacks are performed, including
the fire rate from fire patterns
and power attack (Lavaeteinn).

Attack damage Increases attack (bullet damage)
by 25%.

Shield Level

Grants or upgrades the shield,
which allows the player to block

attacks in focus mode.
Upgrading shield will increase

the angle at which bullets can be
blocked, and reduce cost of

blocking bullets front-on.

Bullet speed Adds speed multiplier to player
bullets, 50% per upgrade.

Controls

Gamepad:

Left stick to move
Right stick to aim (and fire if auto-fire)

L3 – center look – the player will face the direction of their movement. Holding it for 0.5 seconds toggles
auto-look mode, where the player will continue to face the direct of movement input. If right stick is
pressed, it will still override auto-look
R3 – toggle auto-fire. (i.e. the player will automatically fire when right stick is pressed, if applicable)

A – interact, menu select
X – Spell
B – bomb, menu back
Y – power attack (melee)

Start – Pause
Back – map (also pauses the game)

D-Pad – d-pad directions correspond to the equip slot of the corresponding right thumb button and
action. Ideally dpad-up cycles through power attacks, right changes bomb equip, left spells, and down
fire patterns. However, since the game currently does not have any alternate power attacks or bombs,
left/right is used to cycle spells, and up/down to cycle through fire patterns in either direction.

L1/R1 –dodge
L2 – focus/shield mode
R2 – fire

Keyboard:

WASD: move
arrows : aim

escape - pause, menu back
enter – interact, menu select

E: interact, menu select
X: dialog skip, center look
M: map menu
Z: toggle auto fire

1/2 – spell previous/next
3/4 – fire pattern previous/next

Q: spell
C: bomb
space: power attack

ALT (left or right) - dodge
SHIFT (left or right) – shield/focus
CTRL (left or right) – fire

config.txt & custom controls

App configuration can be performed in "%HOMEPATH%\AppData\Local\Koumachika\config.txt". The
app data directory should be created when the application is first run, though you will need to create
the config file.

The config file should contain one directive per line, and tokens should be space-separated. Directives
are processed by their order in the file. Empty lines are ignored, as are lines that start with a hash
symbol or two slashes (“#” or “//”). If a setting doesn’t seem to work, check log.txt for error messages.
Note that directives are case-sensitive, but boolean words (“true”, “false”), control actions, button
names & key names are case-insensitive.

The following directives are recognized in the config file:

framerate [X] – must be a positive integer value. Default 60
fullscreen [bool] - must be a Boolean value, such as “true” or “false” (case-insensitive) or
“0” or “1”, default false
multithread [bool] - must be a Boolean value, default true. This option causes the game
logic (physics engine & object update) to run in a separate thread. Recommended if you are running the
game at a high rate (120+FPS).
resolution [width] [height] - must be positive integer values, default 1600x1000.
vsync [bool] – default true. Recommended if you are running the game fullscreen at the same
frame rate as the monitor; it is recommended to leave multithread turned on for this.
difficulty [scale] – Must be a floating point (or integer) value 0.25 – 4.0, default 1.0. This
scales the damage the player receives, and the inverse for enemies, i.e. lower value is lower difficulty.

config.txt can also contain control mapping directives:

key [*] [...] / button [*] [...] – Assigns a key/button one or more actions, i.e. the
key or button name, and then a space separated list of actions. This will overwrite the default control
mapping assigned to this key/button, as well as a previous assignment to this key/button. Generally, a

key/button should only be assigned one gameplay action; the intended use for mapping a key/button to
multiple actions is to allow independently setting gameplay and menu/UI control bindings.

#example: keyboard southpaw, swapping WASD and arrow keys
key W aim_up
key S aim_down
key A aim_left
key D aim_right

key RIGHT_ARROW move_right
key LEFT_ARROW move_left
key DOWN_ARROW move_down
key UP_ARROW move_up

#example: swap X and B (spell/bomb), but keep B as menu_back:
button X bomb
button B spell menu_back

clear_key [*] / clear_button [*] – Removes the assignment to a given keyboard key
or gamepad button. It isn’t necessary to use this before assigning, only if you want to un-map unused
buttons (most likely on the keyboard) against accidental presses.

clear_key A
clear_button L1

southpaw [bool] - If set, the gamepad left stick will aim and the right stick will move the player.
note that this has no effect on the move_* or aim_* bindings, only gamepad control sticks.

clear_all_keys – clear all keyboard key bindings

clear_all_buttons – clear all gamepad button bindings

The following key values are recognized:

ESCAPE

BACKSPACE

TAB

RETURN

SHIFT

LEFT_SHIFT

RIGHT_SHIFT

CTRL

LEFT_CTRL

RIGHT_CTRL

ALT

LEFT_ALT

RIGHT_ALT

HOME

PG_UP

END

PG_DOWN

LEFT_ARROW

RIGHT_ARROW

UP_ARROW

DOWN_ARROW

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

SPACE

APOSTROPHE

COMMA

MINUS

PERIOD

SLASH

0

1

2

3

4

5

6

7

8

9

SEMICOLON

EQUAL

LEFT_BRACKET

BACK_SLASH

RIGHT_BRACKET

BACKTICK

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

ENTER

The button names match the convention of the libgainput naming, which uses a mixed convention for
naming controller buttons: right-thumb buttons are described using XBox convention (A/B/X/Y),
whereas the other button are L1/R1, L3/R3, etc are described using PlayStation control convention. The
control sticks are handled as a special case, and currently cannot be re-mapped. move_* and aim_*
actions are intended for keyboard use, although they can technically be used to map d-pad or other
buttons to movement or aiming.

Start

Select

Left

Right

Up

Down

A

B

X

Y

L1

R1

L2

R2

L3

R3

Control actions:

pause
map_menu
menu_select
menu_back
dialog_skip

interact
fire
spell
bomb
power_attack

fire_pattern_previous
fire_pattern_next
spell_previous
spell_next

sprint
focus
center_look
fire_mode

move_up
move_right
move_down
move_left

aim_up
aim_right
aim_down
aim_left

Enemies

Red Fairy

Red fairy – Slower and with more HP. They
can throw bombs at the player, and also have

bomb resistance.

Green Fairy
High agility enemy, with ability to evade

projectiles. They stress from being shot at
and will return fire.

Blue Fairy

They will usually follow a set path in the room
they are in. They have a shield similar to the

player, making it difficult to defeat them with
frontal hits. They have a radius power attack

that it is activated if the player gets in front of
them.

Zombie Fairy
Slow, with heavy darkness touch damage.
They also have a magic effect that will also

put out nearby torches.

Bat High agility, but only threat is touch damage.

License / Copyrights

This project includes sprites from Touhou 6: EoSD and PatchCon: DtL (https://www.spriters-
resource.com/pc_computer/touhoukoumakyoutheembodimentofscarletdevil/sheet/33553/)
(https://www.spriters-resource.com/pc_computer/patchcon/sheet/23185/)

This project includes sound effects from Touhou and https://freesfx.co.uk/.

https://www.spriters-resource.com/pc_computer/touhoukoumakyoutheembodimentofscarletdevil/sheet/33553/
https://www.spriters-resource.com/pc_computer/touhoukoumakyoutheembodimentofscarletdevil/sheet/33553/
https://www.spriters-resource.com/pc_computer/patchcon/sheet/23185/
https://freesfx.co.uk/

